

Scheme I

Evidence for the intermittant formation of 2-(diazomethyl)fluorene (3) was obtained by pyrolyzing 2 at 380 °C (10⁻⁴ torr)

(7) 4,8-Dihydrocyclopenta[*d.e.f*]fluorene: ¹H NMR (CDCl₃, 400 MHz) δ 7.34 (d, J = 7 Hz, 2 H), 7.16 (t, J = 7 Hz, 4 H), 4.31 (s, 4 H); ¹³C NMR (CDCl₃, 100 MHz) δ 137.3 (s), 127.8 (d, J = 158 Hz), 126.5 (s), 124.4 (d, J = 158 Hz), 44.1 (t, J = 133 Hz). This compound was identified by comparison with a sample prepared according to: Trost, B. M.; Kinson, P. L. J. Am. Chem. Soc. **1970**, 92, 2591.

and condensing the product on a -196 °C KBr disk, thereby allowing the observation of a strong IR absorption at 2060 cm⁻¹. The formation of the products 8 and 9 is rationalized in terms of the equilibrating arylcarbenes 4-7. Carbene 4 undergoes insertion into the peri C-H bond to give 9. Ring expansion¹ of the carbenes 4-7 followed by a hydrogen shift gives 8.

The preparative advantage of this synthesis of benz[a]azulene is readily seen when comparing with the 0.5% yield of the best current preparation from fluorene and ethyl diazoacetate.8

The usefulness of the tetrazole pyrolysis is further seen in our preparation of 1-azaazulene (13), an otherwise difficultly accessible and unstable compound previously prepared in a lengthy synthesis in low yield.⁹ 5-Cyanoindole (10) was converted to the tetrazole 11 with $HN_{3.10}$ Pyrolysis of 11 at 350 °C (10⁻⁴ torr) allowed the detection of 5-diazomethylindole (12; 2060 cm⁻¹). At 500 °C (10⁻¹-10⁻³ torr) 1-azaazulene¹¹ (13) was formed in 50% yield together with 30% of the product of cycloreversion, viz., 5cyanoindole (10) (Scheme II). Thus, 1-azaazulene is readily available in a two-step synthesis from commercial 10.

If the nascent carbene function is moved from the six-membered to the five-membered ring in compounds of the types 3 and 12, the corresponding benzenoid hydrocarbons are formed in place of azulenes. Thus, we prepared the sodium salts of the tosylhydrazones of indene-2-carboxaldehyde, indole-3-carboxaldehyde, and fluorene-9-carboxaldehyde, which, on pyrolysis at 650 °C (10^{-3} torr) gave naphthalene, quinoline, and phenanthrene in isolated yields of 66%, 30%, and 50%, respectively.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Additions and Corrections

Template Effects. 6. The Effect of Alkali Metal Ions on the Formation of Benzo-3x-crown-x Ethers over a Wide Range of Ring Sizes [J. Am. Chem. Soc. 1984, 106, 168]. LUIGI MANDOLINI and BERNARDO MASCI*

Page 171: The corrected form of eq 3 is

$$k_{\text{obsd}} = \frac{k_{\text{i}} + k_{\text{ip}}K_{\text{ArO}}\gamma_{\pm}^{2}[\text{M}^{+}] + k_{\text{it}}K_{\text{ArO}}K_{\text{ArO}}M^{+}\gamma_{\pm}^{2}[\text{M}^{+}]^{2}}{1 + K_{\text{ArO}}\gamma_{\pm}^{2}[\text{M}^{+}] + K_{\text{ArO}}K_{\text{ArO}}M^{+}\gamma_{\pm}^{2}[\text{M}^{+}]^{2}}$$
(3)

⁽⁸⁾ Alder, R. W.; Whittaker, G. J. Chem. Soc., Perkin Trans 2 1975, 714. (9) Nozoe, T.; Seto, S.; Matsumura, S.; Terasawa, T. Chem. Ind. (London) 1954, 30, 1356, 1357. Nishiwaki, T.; Abe, N. Heterocycles 1981, 15, 547.
(10) 11: mp 245 °C dec; ¹H NMR (Me₂SO-d₆, 400 MHz) δ 11.50 (s, 1 H), 8.31 (s, 1 H), 7.81 (d, 1 H), 7.60 (d, 1 H), 7.48 (s, 1 H), 6.59 (s, 1 H),

H), 8.31 (8, 1 H), 7.81 (4, 1 H), 7.60 (4, 1 H), 7.48 (8, 1 H), 6.39 (8, 1 H), 6.5 (br, 1 H); mass spectrum, m/z 185.0773 (calcd for C₉H₂N₅, 185.0782); correct elemental analysis (C, H, N) was obtained. (11) **13**: picrate mp 196-197 °C dec (lit.⁹ 197-198 °C); UV (CH₃OH) λ 340, 330, 310, 260, 230 nm; ¹H NMR (CD₃OD, 400 MHz) δ 9.26 (d, J = 10 Hz, 1 H), 9.14 (d, J = 10 Hz, 1 H), 8.09 (d, J = 3 Hz, 1 H), 8.66 (t, J = 10 Hz, 1 H), 8.49 (t, J = 10 Hz, 1 H), 8.43 (t, J = 10 Hz, 1 H), 7.69 (d, J = 3 Hz, 1 H); mass spectrum, m/z 129 (M⁺).